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LETTER TO THE EDITOR 

Jaynes-Cummings model diagonalization based on symmetry 

G Benivegna and A Messina 
lstiNto de Fisica dell'Universiti deai Studi di Palemno, Gtuppo Nazionale del CNR and 
Centm Interunivenimio di Smttura della Materia del MURST, via Axhirali 36,90123 
Palermo, Italy 

Received 7 June 1994 

Abstract. We illustrate a new systematic diagonalization procedure through its application to the 
well known JaywsCummings model. Our method, starting from the consideration of peculiar 
invariance properfies of the Hamiltoh, singles out specific constants of molion by whicb we 
succeed in introducing appropriate unitar) transformations accomplishing a canonical reduction 
of the Hamiltonian into a diagonal form. The potentialities of the mtment is briefly discussed. 

The interaction between radiation and matter in the well known Jaynedummings (JC) 
approach [l], is described by a rather simplified but successful model consisting of a 
single two-level atom coupled, close to resonance, to a single mode of the quantized 
electromagnetic field. The model is at the hear? of laser physics and quantum optics 
[Z]. In addition, the IC model predicts a surprisingly rich dynamics characterized by the 
occurrence of highly attractive quantum effects [3] some of which may now be observed 
in the laboratory with the help of experimental techniques involving Rydberg atoms and 
high-Q microcavities [4]. 

Exact results concerning the stationary states of the coupled atom-field system were first 
put forward by Jaynes and Cummings more than thirty years ago, diagonalizing the secular 
matrix of the total Hamiltonian. These stationary states, known as dressed states of the 
system [5 ] ,  identify a new physical unit, named a dressed atom [6], consisting of an atom 
and the radiation field to which the atom is coupled. The conceptual and formal advantages 
stemming from the adoption of such a point of view appear particularly evident each time 
matter-radiation problems such as, for instance, resonance fluorescence [7], are investigated 
using a canonical transformation approach. In principle, in fact, this way of proceeding 
should make introducing the dressed atom representation easier, as well as constructing the 
effective interaction Hamiltonian. 

In this letter we present the application to the Jc model of a systematic procedure 
by which we succeed in obtaining, step-by-step, a canonical transformation realizing both 
the atomic dressing and the separation of pseudospin and bosonic variables. Our method, 
founded on the existence of symmetry transformations for the basic Hamiltonian of this 
model, enables a detailed and well-reasoned introduction of appropriate unitary operators 
accomplishing a canonical reduction of the Hamiltonian to a diagonal form. 

The Hamiltonian of the JC model, neglecting the so-called counter-rotating terms, reads 
(h = 1) 

Hxf = OCY', + $IOUz + &(CYU+ +a'u-) (1) 
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where the operator exp(ifa!ta!) is inserted at this point only for convenience. Noting that 

T = cos* (;a!ta!) + ux sin* a!tu = (5 ) 
we easily deduce 

Ti(a!U+ k a!tU_)T = (a! *a!?) - (a T &Uz cos(na!'a!). (13) 

Using (IO), (11) and (13) we get the transformed Hamiltonian Hj = TtHS/T in the 
following form: 

H/ =oat, + 0; - cos(aruta!) +&(U +Et) +&(at  - a)u, COS(lra!ta!). (14) 

The effective bosonic Hamiltonian may be immediately derived from (14) by simply 
regarding in it U, as a c-number coincident with +1 or -1. It should be noted the presence 
in H, of the complicated nonlinear last term Effecting the lack of the counter-rotating 
contributions in the coupling of the old hannonic oscillator and the two-level atom. Of 
course the unitary operator 

2 

8 ( ~ )  = T ~ G ( ~ ) T  = exp(-i/N/) 

generates, for any C, a symmetry transformation for H,c so that 

(15) 

N, = TtiVSfT = at, + ;Uz cos(nata!) + 1 (16) 

This last commutation property trivially assures that the following transformation law 

y = R ~ R  

R = exp[iA(H/ - uwN/ - rw)] 

leaves H/ invariant for any choice of the real parameters A, U and r .  It is not difficult to 
convince oneself that the evaluation of y in terms of a! and ut becomes an easy task once 
its explicit expression in correspondence to particular values of v and r is achieved. We 
fix the values of U and 5 requiring that R, in each subspace where Nr has a definite value, 
depends on its exponent only linearly. The possibility of satisfying such a prescription 
stems from the fact that the invariant subspaces of Nr are, at most, bidimensional, as a 
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direct consequence of the assumed form of the interaction term in the Jc Hamiltonian. If 
we write 

HI - v W N f  - TW = H i +  H, (20) 

with 

( 1  - V)Nf - - 
2 

and 

0; COS(lrLYto() + €(or + Ut) + &(Ut - o r ) q  COS(mY+or) (22) 
00 --w H, = - 

2 

taking into account that [H& H?] = 0 and that 

A necessary and sufficient condition to obtain R in the required form is that U = 1 and 
T = -4. The correspondent expression of R may be written as 

R = e'*" = COS[,IO(~~'CU)J + iH,O-](o(+Ly) sin[h@(cutcu)l 0.4) 

where 

provided that the operator @p-'(or+or)HI~in[hO(ator)] acts as the operator AH, in the 
subspace where no excitation is present in the system and at resonance. Using (24) in 
(18),we finally get the expression of y for U = 1 and T = -4: 

y = 2cz + e-""r(aZA + [ B  + 2cos(h@(ortor))]o( + C) (26) 

where 

A = 2i&~'(ortor) sinp@(ator)] (27) 

B = cos[h@(ator + I)] - iH,W'(ator + l)sin[h@(da + l)] (28) 

C = 2i&NfW1 (ator) sin[h@(atar)]. (29) 

We have thus established a link between the constant of motion H, and the existence of 
that peculiar invariance property of H, described by (26). Even if we are faced with a 
quite involved symmetry transformation law, the key intermediate step to cany further the 
diagonalization of H3f with our treatment is just the knowledge of H,. In fact, as H, is 
Hermitian and the eigenvalues of Nf are all non-negative integers, considering (23), Ihe 
eigenvalues of H, must be of the form 
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with n = 0, 1,2, . . . . Considering moreover that H, admits non-diagonal representations in 
each degenerate subspace of Nr and that its expectation value is negative when no excitation 
is present in the system, we deduce that E * @ )  is always an eigenvalue of H, with the onIy 
exception of E+(O). If we therefore put 

the spectrum of the operator Q(N~)uZcos(rtcutor) coincides with that of H,. This fact 
encourages us to look for a unimy operator V, commuting with N,, and such that 

V~H,  v = S2(Nj)uZ cos(xator). (32) 

As a consequence of its definition, V does not commute with uz cos(nata). This amounts to 
saying that the operator V cannot be a function of N f  only, and that therefore it must depend 
on other operators commuting with N,. Taking into account that [NI, Tt(~ru+rtatu-)T] = 
0, a look at (13) strongly suggests writing V simply as exp[iq(N,)K+I or exp[q(Nf)K-], 
where q ( N j )  is a Hermitian operator to be determined later and 

K* = (a rt a t )  - (a 7 &Uz cos(xCrtCr). 

However, (32) implies [ V, K+1 # 0. This leads us to choose 

(33) 

v = eXp[q(Nj)[(Cr - ai) - (Cr + @‘)Uz COS(rtCrtCr)]) (34) 

and to solve the operatorial equation (32) in the unknown q ( N / ) .  To this aim we observe 
that from 

K! -4Nf (35) 

it is possible to deduce the following representation of V: 

V = cosh[q(N,)K-l+ sinh[q(Nf)K-l 
= cos[iq(Nf)K-] - i sin[iq(Nf)K-l 

= cos [2fiq(N,)] + $N;”’K- sin [ 2 f i q ( N f ) ]  (36) 

-I/Z . provided that the operator NI 
excitation is present in the system. From (36) we immediately get 

sm[2fiq(Nf)] acts as 2 q ( N f )  in the subspace where no 

vt =coslp - f ~ ; ” * ~ - s i n ~  (37) 

We now proceed to the evaluation of Vt[uzcos(nata)]V and VtK+V. 

~ t [ u ~ c o s ( r a + o r ) l ~  = (cos 6 - ;N;’/’K- sin up)[uz cos(rcutor)~(cos o + $N;’/”K- sin O )  

(39) = [uz cos(xorta)]cos(2V) + !jN;”’K+ sin(26). 
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Analogously we get: 

Using (39) and (40) in (32) yields the following equation for 6: 

[ f (wo  - o) cos(20) -ZEN:’’ sin(20)l[u, c o s ( n J a ) ~  
-1/2 I + [:(coo - w)Nf sm(26) + &cos(219)]K+ = i2(N/)uzcos(~ata) .  (41) 

This condition is equivalent to the following system of equations: 

(wg - w )  cos(20) - 4~~,!”sin(28) = Z Q ( N ~ )  
(42) I 4&N,!” cos(26) + (00 - w )  sin(26) = 0 

which, at resonance, gives 

6 = - ~ / 4  (43) 

whereas, out of resonance, can be satisfied by putting 

cos(26) = - o)n-’(~/) sin(29) = - z E ~ ~ s T ’ ( N ~ ) .  (44) 

We have thus completed the construction of the unitary operator V realizing the 
transformation of the constant of motion H, into the operator S2(Nf)o;cos(rcrta). Taking 
into account that [V, Nf3 = 0, we immediately obtain 

H = V+H,V = O(N/  - 4) + Q(N,)UZ cos(nata) (45) 

which, as anticipated, is in diagonal form. The eigenvalues of H and then of Ha/ are: 

E(N,B) = w ( N - t ) + B . J f ( o o - w ) * + 4 & 2 N  (46) 

where N = 0,1 ,2 , .  . . is an eigenvalue of N f  and B = &1 is an eigenvalue of uz cos(ncrfor). 
We note that B is independent on N except when N = 0 in which case it assumes only its 
negative value. The eigenstates of Tf3/ may be written as 

T V I N , 6 )  (47) 

with IN, 3)  simultaneous eigenstate of Nf and uz cos(ntrta). It is convenient to have 
explicit expressions of the eigenstates of Hsr in terms of the simultaneous eigenstates of 
atcranduz whichwemaydenoteasln,~) withcutcrln,~) =n(n,u)anduzln,o)  =uln,u) .  

(48) 

We note that 

I IN, 3 )  = In = N - i3  - 5 U = 3cos(nn)). 

Using (7), (37) and (48) we succeed in calculating the action of the operator TV on the 
state IN, 6 )  obtaining the following result: 

T V I N , + 1 ) = c o s ( ~ ~ ) ~ n = N - l , ~ = f l ) + s i n ( ~ ~ ) ~ n ~ N , u = - 1 )  (49) 

TVlN,- l )=cos(6t , ) ln=N,o =- l ) - s in(Ot , )n=N-l ,u  = + I )  (50) 
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forany N > O .  When N = O w e g e t T V l N = O , ~ = - l ) = I n = O , o = - l )  whichis 
the ground state of the JC Hamiltonian as long as E' c y.  The coefficients cos($,,) and 
sin(%) are the eigenvalues of the operators cos($) and sin($) deducible from (44). These 
quantities explicitly expressed in terms of o, 00 and E are given by 

Before closing, we wish to add a few remarks on some characteristic aspects of the Ireatment 
presented in this letter. The unifying idea underlying the reduction of Hsj to Hj and that 
of Hj to H is the unitary transformation of a known constant of motion into an operator 
chosen in such a way to guarantee, npriori, an effective simplification in the search of the 
stationary states of the system. From this point of view the key equations in our treatment 
are (6) and (32) from which we succeed in getting explicit expressions for T and V .  Of 
course h e  explicit knowledge of suitable constants of motion, is the main presupposition of 
such a way of proceeding. A constructive proof of their existence is given in the course of 
the letter, showing their connection with peculiar symmetry properties of the Hamiltonian. 

In conclusion, we believe that the systematic treatment applied in this letter to the IC 
model, besides the fact that it sheds light on further features of this model, may be useful 
to investigate other Hamiltonian models such as, for instance, some generalized multimode 
or multiphoton IC models [8,9] or the Dicke Hamiltonian [7]. 
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